Showing a picture in a userform in MS Office for Mac - API

After writing the LoadPicture fix by making frx files, I really had a brainwave: surely to write MS Office on the Mac, you would not start from scratch, but try to make the existing code fit as best as possible. This meant that the Windows API functions should have been kept with an interface for using them on a Mac. Ta-dah! Searching inside the files for a certain API function name I found that the file

Applications:Microsoft Office 2011:Office:MicrosoftOffice.framework:MicrosoftOffice

did actually have a long list of Windows API function names!!! 
Calling them within the Mac was very hit-and-miss. Perfectly written API calls in Windows could seriously crash a Mac (and I mean it: try and call other API functions as you wish but do not have any document or program of any value open at the same time). But after trial and error – mainly error and many trials – I was able to embed a bitmap inside a larger template bitmap within a userform at runtime. An initial loading of a picture from disk takes about 0.1-0.3s and thereafter only 0.05s. So a chart could be shown, a user could click on it and the chart redrawn in Excel’s graph object and then re-loaded into the userform. 

How the program works
It would be easy to create a picture using the API OleCreatePictureIndirect, but this particular API does not exist. I tried creating a bitmap and then BitBlt-ing but it was unstable on the Mac and never worked (although worked fine in Windows). Therefore we need to use an existing StdPicture object. However, while on the mac the API GetDimensions exists, SetDimensions does not – hence the need to embed the bitmap file inside an existing one.
In the module modLoadPic there is a function called LoadPictureForMac (!). This loads the bitmaps file into an array. It then searches for the smallest bitmap which can contain the file through a series of bitmaps of varying sizes which have been saved with userforms. A bitmap header matching the found bitmap’s size is then created and the file bitmap is then copied to overwrite part of the array bitmap, using the API memcpy for speed.
Using SelectObject with an existing bitmap on Mac seems to crash it (probably due to only one DC being linked to bitmap at any one time, and we cannot get the existing DC linked to the bitmap – these are from my notes within the procedure but I really cannot remember much as it was about two years ago!). So we use the API SetDIBits to set the userform’s bitmap to be that of the new bitmap. The ‘.Picture’ object is then returned with its size to allow resizing.
Finer points for speed
Speed is at a premium for a good user interface. Therefore we load the existing userforms with their pre-set bitmaps into memory because a userform seems to open quicker if an existing instance of it has already been loaded. Also, if we pass the reference to the userform (‘Me’) then the add-in will keep a userform in memory so that the picture can be changed quickly. These then have to be removed when our userform closes.

Major problem
[bookmark: _GoBack]This work well on Excel for Mac 2011 but crashes on Excel for Mac 2016. The SetDIBits API call failed. Hence the need to go back to making the frx files. (This document was going to be part of the original documentation until I tested the routine in Excel for Mac 2016!)

I could copy the hBitmap handle into the code for another image picture:

memcpy ByVal (ObjPtr(Image1.Picture) + 28), lngHandleInOtherForm, 4

but couldn’t get it to show when creating my own bitmap.



Any ideas?

