How the ‘LoadPicture for Mac’ routine works

modPublic.LoadPictureForMac
This calls modLowerBMPResolution.LowerBitmapResolutionAndOrExtend to get the smallest bitmap dimensions for the required resolution in which to embed the bitmap file. It then calls BuildNewFRMFRXFiles to make the frx file with the bitmap file embedded in it, and tries to import the frm file. It then accesses the picture object and checks that the bitmap was imported ok. (The Mac does not have UserForms.Add to open a new form; I did try creating a module at runtime to open the form and then load it as normal, but there was no speed improvement.) If the bitmap was not loaded (by checking the height=0) then it double-reverses the bitmap file and tries again. Finally, the picture object with the bitmap file embedded in it is then returned.

[bookmark: _Ref327815028]modLowerBMPResolution.LowerBitmapResolutionAndOrExtend
This reads the source bitmap file header, and then calls FindSmallestSizeExtension_ColumnNumber to get the column number for the worksheet containing the smallest dimension for the bitmap container. If the bitmap file needs to be stretched (as per Excel 2016 bug fix) then it is stretched and the stretched bitmap file header is loaded in via the intStretchLoop for-next loop (just so that I didn’t have to copy code; perhaps a separate routine would have been clearer, but this was an additional bug-fix and didn’t think of it at the time!).

Now to convert the source bitmap to the required resolution involves some tricks for speed. If the source bitmap is 32-bit then we can read the pixels into long variables (RGBA, 4 bytes) and then extract the RGB information quickly. For converting to 256 colours, the alpha value is removed by ‘And &HFFFFFF’. For converting to 24-bit, we can usually use a user-defined array for the 24-bit array, and we have the following code:

 uLng.lng = lngSourcePixels(lngSourceBytePosition)
 LSet uByteSplit = uLng
 LSet uRGBDestPixels(lngDestBytePosition) = uByteSplit.uRGB

where the user-defined types are:

Public Type udtLong
 lng As Long
End Type
Public Type udtRGB
 R As Byte
 G As Byte
 B As Byte
End Type
Public Type udtRGBA
 uRGB As udtRGB
 bAlpha As Byte
End Type

This is much quicker than diving by 256 each time and taking the remainder to get the RGB values. (I’ve included a sample function for you, GetRGBFromLong, to return the red, green, and blue bytes,)

Note reading the file bytes into a user-defined array would be nicer but it takes ages!!

The containing bitmap with the source bitmap embedded in it is then saved to disk. (I did think of keeping it in an array when building the frx files, but moving bytes around is not quick in VBA, and it seemed quick enough anyway as it was. Even using the memcpy API I think there would be no speed improvement over the current method.)

Note converting to 16 colours was left in as it was easier than taking it out. It seemed to take about the same time as for 256 colours for a much worse picture. However, if I hadn’t written the code I would never have known.
[bookmark: _GoBack]

